78 research outputs found

    Non-Gaussian Discriminative Factor Models via the Max-Margin Rank-Likelihood

    Full text link
    We consider the problem of discriminative factor analysis for data that are in general non-Gaussian. A Bayesian model based on the ranks of the data is proposed. We first introduce a new {\em max-margin} version of the rank-likelihood. A discriminative factor model is then developed, integrating the max-margin rank-likelihood and (linear) Bayesian support vector machines, which are also built on the max-margin principle. The discriminative factor model is further extended to the {\em nonlinear} case through mixtures of local linear classifiers, via Dirichlet processes. Fully local conjugacy of the model yields efficient inference with both Markov Chain Monte Carlo and variational Bayes approaches. Extensive experiments on benchmark and real data demonstrate superior performance of the proposed model and its potential for applications in computational biology.Comment: 14 pages, 7 figures, ICML 201

    A miRNA Host Response Signature Accurately Discriminates Acute Respiratory Infection Etiologies

    Get PDF
    Background: Acute respiratory infections (ARIs) are the leading indication for antibacterial prescriptions despite a viral etiology in the majority of cases. The lack of available diagnostics to discriminate viral and bacterial etiologies contributes to this discordance. Recent efforts have focused on the host response as a source for novel diagnostic targets although none have explored the ability of host-derived microRNAs (miRNA) to discriminate between these etiologies.Methods: In this study, we compared host-derived miRNAs and mRNAs from human H3N2 influenza challenge subjects to those from patients with Streptococcus pneumoniae pneumonia. Sparse logistic regression models were used to generate miRNA signatures diagnostic of ARI etiologies. Generalized linear modeling of mRNAs to identify differentially expressed (DE) genes allowed analysis of potential miRNA:mRNA relationships. High likelihood miRNA:mRNA interactions were examined using binding target prediction and negative correlation to further explore potential changes in pathway regulation in response to infection.Results: The resultant miRNA signatures were highly accurate in discriminating ARI etiologies. Mean accuracy was 100% [88.8–100; 95% Confidence Interval (CI)] in discriminating the healthy state from S. pneumoniae pneumonia and 91.3% (72.0–98.9; 95% CI) in discriminating S. pneumoniae pneumonia from influenza infection. Subsequent differential mRNA gene expression analysis revealed alterations in regulatory networks consistent with known biology including immune cell activation and host response to viral infection. Negative correlation network analysis of miRNA:mRNA interactions revealed connections to pathways with known immunobiology such as interferon regulation and MAP kinase signaling.Conclusion: We have developed novel human host-response miRNA signatures for bacterial and viral ARI etiologies. miRNA host response signatures reveal accurate discrimination between S. pneumoniae pneumonia and influenza etiologies for ARI and integrated analyses of the host-pathogen interface are consistent with expected biology. These results highlight the differential miRNA host response to bacterial and viral etiologies of ARI, offering new opportunities to distinguish these entities

    A cross-sectional analysis of HIV and hepatitis C clinical trials 2007 to 2010: the relationship between industry sponsorship and randomized study design

    Get PDF
    Abstract Background The proportion of clinical research sponsored by industry will likely continue to expand as federal funds for academic research decreases, particularly in the fields of HIV/AIDS and hepatitis C (HCV). While HIV and HCV continue to burden the US population, insufficient data exists as to how industry sponsorship affects clinical trials involving these infectious diseases. Debate exists about whether pharmaceutical companies undertake more market-driven research practices to promote therapeutics, or instead conduct more rigorous trials than their non-industry counterparts because of increased resources and scrutiny. The ClinicalTrials.gov registry, which allows investigators to fulfill a federal mandate for public trial registration, provides an opportunity for critical evaluation of study designs for industry-sponsored trials, independent of publication status. As part of a large public policy effort, the Clinical Trials Transformation Initiative (CTTI) recently transformed the ClinicalTrials.gov registry into a searchable dataset to facilitate research on clinical trials themselves. Methods We conducted a cross-sectional analysis of 477 HIV and HCV drug treatment trials, registered with ClinicalTrials.gov from 1 October 2007 to 27 September 2010, to study the relationship of study sponsorship with randomized study design. The likelihood of using randomization given industry (versus non-industry) sponsorship was reported with prevalence ratios (PR). PRs were estimated using crude and stratified tabular analysis and Poisson regression adjusting for presence of a data monitoring committee, enrollment size, study phase, number of study sites, inclusion of foreign study sites, exclusion of persons older than age 65, and disease condition. Results The crude PR was 1.17 (95% CI 0.94, 1.45). Adjusted Poisson models produced a PR of 1.13 (95% CI 0.82, 1.56). There was a trend toward mild effect measure modification by study phase, but this was not statistically significant. In stratified tabular analysis the adjusted PR was 1.14 (95% CI 0.78, 1.68) among phase 2/3 trials and 1.06 (95% CI 0.50, 2.22) among phase 4 trials. Conclusions No significant relationship was found between industry sponsorship and use of randomization in trial design in this cross-sectional study. Prospective studies evaluating other aspects of trial design may shed further light on the relationship between industry sponsorship and appropriate trial methodology

    Potential Cost-effectiveness of Early Identification of Hospital-acquired Infection in Critically Ill Patients

    Get PDF
    Limitations in methods for the rapid diagnosis of hospital-acquired infections often delay initiation of effective antimicrobial therapy. New diagnostic approaches offer potential clinical and cost-related improvements in the management of these infections. We developed a decision modeling framework to assess the potential cost-effectiveness of a rapid biomarker assay to identify hospital-acquired infection in high-risk patients earlier than standard diagnostic testing. The framework includes parameters representing rates of infection, rates of delayed appropriate therapy, and impact of delayed therapy on mortality, along with assumptions about diagnostic test characteristics and their impact on delayed therapy and length of stay. Parameter estimates were based on contemporary, published studies and supplemented with data from a four-site, observational, clinical study. Extensive sensitivity analyses were performed. The base-case analysis assumed 17.6% of ventilated patients and 11.2% of nonventilated patients develop hospital-acquired infection and that 28.7% of patients with hospital-acquired infection experience delays in appropriate antibiotic therapy with standard care. We assumed this percentage decreased by 50% (to 14.4%) among patients with true-positive results and increased by 50% (to 43.1%) among patients with false-negative results using a hypothetical biomarker assay. Cost of testing was set at 110/d.Inthebasecaseanalysis,amongventilatedpatients,dailydiagnostictestingstartingonadmissionreducedinpatientmortalityfrom12.3to11.9110/d. In the base-case analysis, among ventilated patients, daily diagnostic testing starting on admission reduced inpatient mortality from 12.3 to 11.9% and increased mean costs by 1,640 per patient, resulting in an incremental cost-effectiveness ratio of 21,389perlifeyearsaved.Amongnonventilatedpatients,inpatientmortalitydecreasedfrom7.3to7.121,389 per life-year saved. Among nonventilated patients, inpatient mortality decreased from 7.3 to 7.1% and costs increased by 1,381 with diagnostic testing. The resulting incremental cost-effectiveness ratio was 42,325perlifeyearsaved.Thresholdanalysesrevealedtheprobabilitiesofdevelopinghospitalacquiredinfectioninventilatedandnonventilatedpatientscouldbeaslowas8.4and9.842,325 per life-year saved. Threshold analyses revealed the probabilities of developing hospital-acquired infection in ventilated and nonventilated patients could be as low as 8.4 and 9.8%, respectively, to maintain incremental cost-effectiveness ratios less than 50,000 per life-year saved. Development and use of serial diagnostic testing that reduces the proportion of patients with delays in appropriate antibiotic therapy for hospital-acquired infections could reduce inpatient mortality. The model presented here offers a cost-effectiveness framework for future test development

    Advancing diagnostics to address antibacterial resistance: The diagnostics and devices committee of the Antibacterial Resistance Leadership Group

    Get PDF
    Diagnostics are a cornerstone of the practice of infectious diseases. However, various limitations frequently lead to unmet clinical needs. In most other domains, diagnostics focus on narrowly defined questions, provide readily interpretable answers, and use true gold standards for development. In contrast, infectious diseases diagnostics must contend with scores of potential pathogens, dozens of clinical syndromes, emerging pathogens, rapid evolution of existing pathogens and their associated resistance mechanisms, and the absence of gold standards in many situations. In spite of these challenges, the importance and value of diagnostics cannot be underestimated. Therefore, the Antibacterial Resistance Leadership Group has identified diagnostics as 1 of 4 major areas of emphasis. Herein, we provide an overview of that development, highlighting several examples where innovation in study design, content, and execution is advancing the field of infectious diseases diagnostics

    Evaluating the discriminating capacity of cell death (apoptotic) biomarkers in sepsis.

    Get PDF
    Background: Sepsis biomarker panels that provide diagnostic and prognostic discrimination in sepsis patients would be transformative to patient care. We assessed the mortality prediction and diagnostic discriminatory accuracy of two biomarkers reflective of cell death (apoptosis), circulating cell-free DNA (cfDNA), and nucleosomes. Methods: The cfDNA and nucleosome levels were assayed in plasma samples acquired in patients admitted from four emergency departments with suspected sepsis. Subjects with non-infectious systemic inflammatory response syndrome (SIRS) served as controls. Samples were acquired at enrollment (T0) and 24 h later (T24). We assessed diagnostic (differentiating SIRS from sepsis) and prognostic (28-day mortality) predictive power. Models incorporating procalcitonin (diagnostic prediction) and APACHE II scores (mortality prediction) were generated. Results: Two hundred three subjects were included (107 provided procalcitonin measurements). Four subjects exhibited uncomplicated sepsis, 127 severe sepsis, 35 septic shock, and 24 had non-infectious SIRS. There were 190-survivors and 13 non-survivors. Mortality prediction models using cfDNA, nucleosomes, or APACHEII yielded AUC values of 0.61, 0.75, and 0.81, respectively. A model combining nucleosomes with the APACHE II score improved the AUC to 0.84. Diagnostic models distinguishing sepsis from SIRS using procalcitonin, cfDNA(T0), or nucleosomes(T0) yielded AUC values of 0.64, 0.65, and 0.63, respectively. The three parameter model yielded an AUC of 0.74. Conclusions: To our knowledge, this is the first head-to-head comparison of cfDNA and nucleosomes in diagnosing sepsis and predicting sepsis-related mortality. Both cfDNA and nucleosome concentrations demonstrated a modest ability to distinguish sepsis survivors and non-survivors and provided additive diagnostic predictive accuracy in differentiating sepsis from non-infectious SIRS when integrated into a diagnostic prediction model including PCT and APACHE II. A sepsis biomarker strategy incorporating measures of the apoptotic pathway may serve as an important component of a sepsis diagnostic and mortality prediction tool

    Discriminative Value of Inflammatory Biomarkers for Suspected Sepsis

    Get PDF
    Circulating biomarkers can facilitate sepsis diagnosis enabling early management and improved outcomes. Procalcitonin (PCT) has been suggested to have superior diagnostic utility compared to other biomarkers

    Disease Progression in Hemodynamically Stable Patients Presenting to the Emergency Department With Sepsis

    Get PDF
    Aggressive diagnosis and treatment of patients presenting to the emergency department (ED) with septic shock has been shown to reduce mortality. To enhance the ability to intervene in patients with lesser illness severity, a better understanding of the natural history of the early progression from simple infection to more severe illness is needed

    Human genetic and metabolite variation reveals that methylthioadenosine is a prognostic biomarker and an inflammatory regulator in sepsis.

    Get PDF
    Sepsis is a deleterious inflammatory response to infection with high mortality. Reliable sepsis biomarkers could improve diagnosis, prognosis, and treatment. Integration of human genetics, patient metabolite and cytokine measurements, and testing in a mouse model demonstrate that the methionine salvage pathway is a regulator of sepsis that can accurately predict prognosis in patients. Pathway-based genome-wide association analysis of nontyphoidal Salmonella bacteremia showed a strong enrichment for single-nucleotide polymorphisms near the components of the methionine salvage pathway. Measurement of the pathway's substrate, methylthioadenosine (MTA), in two cohorts of sepsis patients demonstrated increased plasma MTA in nonsurvivors. Plasma MTA was correlated with levels of inflammatory cytokines, indicating that elevated MTA marks a subset of patients with excessive inflammation. A machine-learning model combining MTA and other variables yielded approximately 80% accuracy (area under the curve) in predicting death. Furthermore, mice infected with Salmonella had prolonged survival when MTA was administered before infection, suggesting that manipulating MTA levels could regulate the severity of the inflammatory response. Our results demonstrate how combining genetic data, biomolecule measurements, and animal models can shape our understanding of disease and lead to new biomarkers for patient stratification and potential therapeutic targeting

    Future research directions in pneumonia

    Get PDF
    Copyright © 2018 by the American Thoracic Society. Pneumonia is a complex pulmonary disease in need of new clinical approaches. Although triggered by a pathogen, pneumonia often results from dysregulations of host defense that likely precede infection. The coordinated activities of immune resistance and tissue resilience then dictate whether and how pneumonia progresses or resolves. Inadequate or inappropriate host responses lead to more severe outcomes such as acute respiratory distress syndrome and to organ dysfunction beyond the lungs and over extended time frames after pathogen clearance, some of which increase the risk for subsequent pneumonia. Improved understanding of such host responses will guide the development of novel approaches for preventing and curing pneumonia and for mitigating the subsequent pulmonary and extrapulmonary complications of pneumonia. The NHLBI assembled a working group of extramural investigators to prioritize avenues of host-directed pneumonia research that should yield novel approaches for interrupting the cycle of unhealthy decline caused by pneumonia. This report summarizes the working group’s specific recommendations in the areas of pneumonia susceptibility, host response, and consequences. Overarching goals include the development of more host-focused clinical approaches for preventing and treating pneumonia, the generation of predictive tools (for pneumonia occurrence, severity, and outcome), and the elucidation of mechanisms mediating immune resistance and tissue resilience in the lung. Specific areas of research are highlighted as especially promising for making advances against pneumonia
    corecore